
Lots of buzz and energy about Frobenius and his method. Probably more than the average 
person can put up with. Problems 5, 7, 9, 11, 15, 17 and 19 were worked straightforwardly 
without resorting to Frobenius, (and 13 could have been).

The following example is found at https : // wps.prenhall.com/wps/media/objects/884/905578/As-
signment8_ 2 _V5.pdf. It seems to work for certain equations, and I keep it here for general 
interest. It does not work on problem 9, however. Reading the included comments may give 
insight on where it can be expected to work.
ClearAll["Global`*⋆"]

eqn = 2 x2 (x + 1) y''[x] + 3 x (x + 1)3 y'[x] -− 1 -− x2 y[x] ⩵ 0;

The first step is to verify that x=0 is in fact a regular singular point of this equation. This is 
done by dividing through by the leading coefficient, which is 2 x2 (x + 1). This will put the 
equation in standard form.

y''[x] +
3 x (x + 1)3

2 x2 (x + 1)
y'[x] -−

1 -− x2

2 x2 (x + 1)
y[x] ⩵ 0;

The standard form, shown in numbered line (1) on p. 180, includes a 1x sub-term for the 
y '[x] term and a 1

x2
sub-term for the y[x] term. Thus of the remainder of the terms, called 

p[x] and q[x], the p[x] will be the coefficient for the y ' and the q[x] will be the coefficient 
for the y. 

q[x_] = Simplify-−
1 -− x2

2 (x + 1)


1

2
(-−1 + x)

p[x_] = Simplify
3 (1 + x)2

2


3

2
(1 + x)2

Taking a good look at the two declarations above, I see that neither one has any x-−m factor 
in it. This may be necessary for the present example to work. Now to set the number of 
terms in the series.
n = 7;

Expand p[x] in a Maclaurin series

pseries = Series
p[x]

x
, {x, 0, n} /∕/∕ Normal

3 +
3

2 x
+
3 x

2



and also q[x]

qseries = Series
q[x]

x2
, {x, 0, n} /∕/∕ Normal

-−
1

2 x2
+

1

2 x

The first step in making a generic Frobenius series is the following
coeffs = Array[c, n, 0];

Another component is determined by

lotsofxpowers = Tablex(r+j), {j, 0, 2 n};

And a third necessary component comes from

xpowers = Tablex(r+j), {j, 0, n -− 1};

Stirring and gelling the series is accomplished by
y = coeffs.xpowers;

The first derivative of the series will be needed
yprime = D[y, x]

r x-−1+r c[0] + (1 + r) xr c[1] + (2 + r) x1+r c[2] +
(3 + r) x2+r c[3] + (4 + r) x3+r c[4] + (5 + r) x4+r c[5] + (6 + r) x5+r c[6]

Note above that the largest minus exponent in yprime is x-−1. Now to find the second deriva-
tive also
y2prime = D[y, {x, 2}]

(-−1 + r) r x-−2+r c[0] + r (1 + r) x-−1+r c[1] + (1 + r) (2 + r) xr c[2] +
(2 + r) (3 + r) x1+r c[3] + (3 + r) (4 + r) x2+r c[4] +
(4 + r) (5 + r) x3+r c[5] + (5 + r) (6 + r) x4+r c[6]

Note above that the largest minus exponent in ‘y2prime’ is x-−2. The differential equation 
itself is the next to be created. Because of the limited presence of minus exponents on x, 
multiplying through by x2 here normalizes the series so that the lowest order term appear-
ing will be xr.
x2 *⋆ (y2prime + pseries *⋆ yprime + qseries *⋆ y) /∕/∕ Expand;

The series will adopt an appearance of order after executing the following
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lhs = Collect[%, lotsofxpowers]

xr -−
c[0]

2
+
1

2
r c[0] + r2 c[0] +

x1+r
c[0]

2
+ 3 r c[0] + c[1] +

5

2
r c[1] + r2 c[1] +

x2+r
3

2
r c[0] +

7 c[1]

2
+ 3 r c[1] +

9 c[2]

2
+
9

2
r c[2] + r2 c[2] +

x3+r
3 c[1]

2
+
3

2
r c[1] +

13 c[2]

2
+ 3 r c[2] + 10 c[3] +

13

2
r c[3] + r2 c[3] +

x4+r 3 c[2] +
3

2
r c[2] +

19 c[3]

2
+ 3 r c[3] +

35 c[4]

2
+
17

2
r c[4] + r2 c[4] +

x5+r
9 c[3]

2
+
3

2
r c[3] +

25 c[4]

2
+ 3 r c[4] + 27 c[5] +

21

2
r c[5] + r2 c[5] +

x8+r 9 c[6] +
3

2
r c[6] + x7+r

15 c[5]

2
+
3

2
r c[5] +

37 c[6]

2
+ 3 r c[6] +

x6+r 6 c[4] +
3

2
r c[4] +

31 c[5]

2
+ 3 r c[5] +

77 c[6]

2
+
25

2
r c[6] + r2 c[6]

Note above that Collect has ordered the terms so that the xr term comes first. This may 
not always be the case, and if it is not, it will affect the following steps. A necessary prelimi-
nary step to finding the indicial roots is
firstcoeff = lhs[[1, 2]]

-−
c[0]

2
+
1

2
r c[0] + r2 c[0]

Note two things about ‘firstcoeff’ above. It contains elements of r, and it contains a single 
constant parameter, here c[0]. Both of these characteristics are needed to make the exam-
ple work. To reveal the roots, set the above expression to zero and solve as follows.
indroots = Solve[firstcoeff ⩵ 0, r];

Order the roots by size
maxroot = Max[r /∕. indroots]
1

2

minroot = Min[r /∕. indroots]

-−1

The next step is the first in a series of six steps to find the first solution, y1.
lhsy1 = lhs /∕. r → maxroot;

 To determine the values of the arbitrary coefficients, a preliminary step is

y1series =
lhsy1

xmaxroot
/∕/∕ Distribute;
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followed by the next step, which makes a list of coefficients.
y1seriescoeffs = Take[CoefficientList[y1series, x], n -− 1];

The higher-degree coefficients in terms of C[0] will be found by
y1coeffs = Solve[{y1seriescoeffs ⩵ 0, c[0] ⩵ 1}][[1]];

At this point the first solution, y1, can be created by
y = Drop[coeffs, -−1].Drop[xpowers, -−1]

xr c[0] + x1+r c[1] + x2+r c[2] + x3+r c[3] + x4+r c[4] + x5+r c[5]

followed by the final necessary step
y1 = Collect[y /∕. r → maxroot /∕. y1coeffs, x]

x -−
4 x3/∕2

5
+
13 x5/∕2

28
-−
134 x7/∕2

945
-−
2741 x9/∕2

332 640
+
20429 x11/∕2

772 200

To find the second solution, y2, requires a similar set of six steps.
lhsy2 = lhs /∕. r → minroot;

y2series =
lhsy2

xminroot
/∕/∕ Distribute;

y2seriescoeffs = Take[CoefficientList[y2series, x], n -− 1];
y2coeffs = Solve[{y2seriescoeffs ⩵ 0, c[0] ⩵ 1}][[1]];
y = Drop[coeffs, -−1].Drop[xpowers, -−1];
y2 = Collect[y /∕. r → minroot /∕. y2coeffs, x]

-−5 +
1

x
+ 4 x -−

28 x2

9
+
64 x3

45
-−
376 x4

1575

And now the two solutions, y1 and y2, are plotted. Note that the roots to the equations are 
not those found above. Those roots were indicial roots, not roots to the actual ODE solution 
equation.
Plot[{y1, y2}, {x, -−1, 3}, PlotRange → {{-−1, 3}, {-−1, 1}}]

-−1 1 2 3

-−1.0

-−0.5

0.5

1.0

If I want to find the actual roots to the two solutions, I can.
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FindRoot[y1, {x, 0}]

{x → 0.}

FindRoot[y2, {x, 0.2}]

{x → 0.237723}

If I task WolframAlpha with the problem, it tells me it is Sturm-Liouville, but doesn’t solve 
it, only gives some possible plots. Taking this as a cue, I could do (for y1)
ClearAll["Global`*⋆"]

eqn2 = 2 x2 (x + 1) y''[x] + 3 x (x + 1)3 y'[x] -− 1 -− x2 y[x] ⩵ 0;
ics = {y[0.6] ⩵ 0.51, y'[0.13] ⩵ 1};
num = First[y /∕. NDSolve[{eqn2, ics}, y, {x, 0.01, 1}]]

InterpolatingFunction Domain: {{0.01, 1.}}
Output: scalar



Plotnum[x], x -−
4 x3/∕2

5
+
13 x5/∕2

28
-−
134 x7/∕2

945
-−
2741 x9/∕2

332 640
+
20 429 x11/∕2

772 200
,

{x, 0.01, 1}

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

showing the y1 solution just starting to peel away above the interpolated function at x=1.
I have not been successful in checking the solutions y1 and y2, though I have tried a couple 
of different ways.
And the equation seems resistant to DSolve. For instance, the straightforward attempt 
below only returns an uninformative briar patch of formal characters.
ClearAll["Global`*⋆"]

eqn2 = 2 x2 (x + 1) y''[x] + 3 x (x + 1)3 y'[x] -− 1 -− x2 y[x] ⩵ 0;
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sol = DSolve[eqn2, y, x]

y → DifferentialRoot

Function{y.., x..}, (-−1 + x..) y
.
.[x
.
.] + 3 x.. (1 + x..)2 y

.

.
′[x..] + 2 x..2 y

.

.
′′[x..] ⩵ 0,

y..[1] ⩵ C[1], y..
′[1] ⩵ C[2], 78

2 - 13 Frobenius method
Find a basis of solutions by the Frobenius method. Try to identify the series as expansions 
of known functions. 

3.  x y'' + 2 y' + x y = 0

ClearAll["Global`*⋆"]

$1. Working through the long and involved Frobenius method described in the text and 
s.m.. The Hold command does not seem to work as I would like, it gets in the way. I don’t 
have nomenclature to designate a Mathematica pseudosum.
e7 = f[x_] = am xm+r

xm+r am

$2. What is meant by above is the Sum[am xm+r,{m,0,∞}]
e8 = f'[x]

(m + r) x-−1+m+r am

e9 = f''[x]

(-−1 + m + r) (m + r) x-−2+m+r am

e10 = x2 f''[x] + 2 x f'[x] + x2 f[x] ⩵ 0

2 (m + r) xm+r am + (-−1 + m + r) (m + r) xm+r am + x2+m+r am ⩵ 0

$3. Above: The exponential powers of the first two ‘x’ factors are equal, but the third is two 
higher. Since these represent infinite sums, it would not affect their individual (or collec-
tive) summations if the indices were adjusted to all match. As the s.m. suggested, this can 
be accomplished by effectively subtracting 2 from the power of x in the third occurence of 
that variable. This would make the third pseudosum start at 2 (instead of 0) to compensate. 
As for am, that element would be changed to am-−2 in order to have it start at the same place 
as before the change.

e11 = e10 /∕. x2+m+r am → (xm+r am-−2)

xm+r a-−2+m + 2 (m + r) xm+r am + (-−1 + m + r) (m + r) xm+r am ⩵ 0

$4. Above: Last reminder of the form change. Having all the factors mix together should not 
invalidate anything. However, if I find myself in a position where I want to assign 0 or 1 to 
the index m, the coefficient m-−2+m will drop out.
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e12 = Expand[e11]

xm+r a-−2+m + m xm+r am + m2 xm+r am + r xm+r am + 2 m r xm+r am + r2 xm+r am ⩵ 0

e13 = Simplify[e12]

xm+r a-−2+m + m + m2 + r + 2 m r + r2 am ⩵ 0

$5. Below: The indicial equation. (What makes it the indicial equation is setting m = 0.) In 
transferring from above, the factor a-−2+m was ignored.

e14 = Solvem + m2 + r + 2 m r + r2 ⩵ 0, r /∕. m → 0

{{r → -−1}, {r → 0}}

$6. Above: The sol’n of the indicial equation. The s.m. wants to look at the larger root first, 
r = 0. Where am I? After I equalized powers of x, expanded, and simplified, I got e13. Now 
I will look at e13 again, but with r  evaluated.
e15 = e13 /∕. {r → 0}

xm a-−2+m + m + m2 am ⩵ 0

e16 = Solvea-−2+m + m + m2 am ⩵ 0, am /∕. {m → 1, a-−2+m → 0}

{{a1 → 0}}

$7. Making m = 1 in the above allows the finding of a1. Since m < 2, the coefficient a-−2+m 
will be zero.
e17 = e13 /∕. {a-−2+m → 0, r → 0}

m + m2 xm am ⩵ 0

$8. Above: Getting a look at the heart of the equation updated.
A = {};
DoA = UnionA, Solvea-−2+m + m + m2 am ⩵ 0, am, {m, 2, 7};
A

a2 → -−
a0
6

, a3 → -−
a1
12

, a4 → -−
a2
20

, a5 → -−
a3
30

, a6 → -−
a4
42

, a7 → -−
a5
56



$9. What the above set A does not include is the factor a0 x0. The s.m recommends assign-
ing the value 1 to a0, and this will be added when the opportunity presents. The starting 
value of m is 2, because that is the lowest value for which a-−2+m has meaning. There is no 
assigned value for a1 yet. But now everything has a value based on either a0 or a1.
B = {};

Eliminatea4 == -−
a2
20

, a2 == -−
a0
6

, a2

120 a4 ⩵ a0
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Eliminatea6 == -−
a4
42

, 120 a4 ⩵ a0, a4

-−5040 a6 ⩵ a0

Eliminatea5 == -−
a3
30

, a3 == -−
a1
12

, a3

360 a5 ⩵ a1

Eliminatea7 == -−
a5
56

, 360 a5 ⩵ a1, a5

-−20 160 a7 ⩵ a1

B = {a0 → 1}, a2 → -−
a0
6

, a3 → -−
a1
12

,

a4 →
a0
120

, a5 →
a1
360

, a6 → -−
a0

5040
, a7 → -−

a1
20 160



{a0 → 1}, a2 → -−
a0
6

, a3 → -−
a1
12

,

a4 →
a0
120

, a5 →
a1
360

, a6 → -−
a0

5040
, a7 → -−

a1
20 160



cs = {2!, 3!, 4!, 5!, 6!, 7!, 8!}

{2, 6, 24, 120, 720, 5040, 40 320}

B[[3]] = B[[3]] /∕.
a2
120

→
a1
24

a3 → -−
a1
12



B[[4]] = B[[4]] /∕. a2 → a0

a4 →
a0
120



B[[5]] = B[[5]] /∕. a3 → a1

a5 →
a1
360



B[[6]] = B[[6]] /∕. a4 → a0

a6 → -−
a0

5040


B[[7]] = B[[7]] /∕. a5 → a1

a7 → -−
a1

20 160

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e19 = TableForm[Table[{m, am, B[[m]]}, {m, 2, 7}],
TableHeadings → {{}, {"m", "am ", "B[m] ", "a1"}}]
m am B[m] a1
2 a2 a2 → -− a0

6

3 a3 a3 → -− a1
12

4 a4 a4 → a0
120

5 a5 a5 → a1
360

6 a6 a6 → -− a0
5040

7 a7 a7 → -− a1
20 160

$10. There are two series. Let me see if I can separate them:
B1 = {B[[3, 1, 2]], B[[5, 1, 2]], B[[7, 1, 2]]}

-−
a1
12

,
a1
360

, -−
a1

20 160


$11. There is a problem with B1. However, since it will not be used, there is no need to 
investigate it.
B2 = {B[[1, 1, 2]], B[[2, 1, 2]], B[[4, 1, 2]], B[[6, 1, 2]]}

1, -−
a0
6
,

a0
120

, -−
a0

5040


e20 = TableForm[Table[{m, B2[[m]]}, {m, 1, 4}],
TableHeadings → {{}, {"term", "B2[m] "}}]
term B2[m]
1 1
2 -− a0

6

3 a0
120

4 -− a0
5040

y1 = SumB2[[s]] x2 (s-−1), {s, 1, 4}

1 -−
x2 a0
6

+
x4 a0
120

-−
x6 a0
5040

$12. To do as s.m., a0 was assigned a value of 1. Then y1 = 1-− x2
3! +

x4
5! -−

x6
7!

$13. Below is shown the definition version of what will now be called y1. It agrees with the 
text answer for y1.

Series
Sin[x]

x
, {x, 0, 4}

1 -−
x2

6
+

x4

120
+ O[x]5

$14. To get the second sol’n in the basis, y2, it is recommended by the s.m. to march off 
and do reduction of order, covered in section 2.1 of the text. From that perspective it is 
deemed important to put the original equation into standard form,
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$14. To get the second sol’n in the basis, y2, it is recommended by the s.m. to march off 
and do reduction of order, covered in section 2.1 of the text. From that perspective it is 
deemed important to put the original equation into standard form,

e21 = y''[x] +
2

x
y'[x] + y[x] ⩵ 0

y[x] +
2 y′[x]

x
+ y′′[x] ⩵ 0

p[x_] =
2

x
2

x

-−Integrate[p[x], x, GenerateConditions → True]

-−2 Log[x]

$15. Above: Mathematica does not bother to show that the correct answer involves Abs[x]. 
The plot below shows the difference. This doesn’t seem to affect this particular answer, but 
the omission is somewhat disturbing.
plot1 = Plot[-−2 Log[x], {x, -−2, 2}, PlotStyle → Yellow, ImageSize → 250];

plot2 =
Plot[-−2 Log[Abs[x]], {x, -−2, 2}, PlotStyle → {Blue, Thickness[0.01]}];

Show[plot2, plot1]

-−2 -−1 1 2

2

4

6

$16. Putting the integral into another form.
Exp[-−Integrate[p[x], x]]
1

x2

$17. The expression: U = 1
y12

ⅇ-−∫p ⅆx is from section 2.1, p.52, where one sol’n to a homoge-

neous linear ODE with constant coefficents is already known and you are tracking down the 
other part of the basis. Putting it to use,
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capU =
Exp[-−Integrate[p[x], x]]

 Sin[x]
x


2

Csc[x]2

smallu = Integrate[capU, x]

-−Cot[x]

y2 = smallu
Sin[x]

x

-−
Cos[x]

x

$18. The s.m. points out that since it is a combo of y1 and y2 and there are arbitrary coeffi-
cients involved, the minus sign on y2 is not necessary, and the version shown in the answer 
section (no minus sign) can be claimed. 

5.  x y'' + (2 x + 1) y' + (x + 1) y = 0

ClearAll["Global`*⋆"]

e1 = {x y''[x] + (2 x + 1) y'[x] + (x + 1) y[x] ⩵ 0}

{(1 + x) y[x] + (1 + 2 x) y′[x] + x y′′[x] ⩵ 0}

sol = DSolve[e1, y, x]

{{y → Function[{x}, ⅇ-−x C[1] + ⅇ-−x C[2] Log[x]]}}

e1 /∕. sol /∕/∕ Simplify

{{True}}

Mathematica can solve this one without all the Frobenius gingerbread. It should be noted 
that the two parts (terms) of the sol’n shown in green above are considered two separate 
sol’ns, y1 and y2. This was the same case with the first problem, no. 3. In the text answer 
C[1] and C[2] are equal to 1. The answer agrees with that of the text.

7.  y'' + (x - 1) y = 0

Also with this problem I attempt to skip the Frobenius method in favor of a direct assault.
ClearAll["Global`*⋆"]

eqn = y''[x] + (x -− 1) y[x] == 0

(-−1 + x) y[x] + y′′[x] ⩵ 0
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sol = DSolve[eqn, y, x]

y → Function{x},

AiryAi-−(-−1)1/∕3 (1 -− x) C[1] + AiryBi-−(-−1)1/∕3 (1 -− x) C[2]

eqn /∕. sol /∕/∕ Simplify

{True}

FindRootAiryAi-−(-−1)1/∕3 (1 -− x) + AiryBi-−(-−1)1/∕3 (1 -− x), {x, .1}

{x → -−0.845332 + 3.19621 ⅈ}

Though Mathematica finds a pair of apparently viable solutions, dealing with Airy is not 
that easy for me. To plot it, some kind of numericalization seems required, one example 
being
solN = First[y /∕. NDSolve[{eqn, y[0] ⩵ 0, y'[0] ⩵ 1}, y, {x, 0, 5}]]

InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



Plot[{solN[x], solN'[x]}, {x, 0, 8}, PlotStyle → Thickness[0.002]]

2 4 6 8

-−15

-−10

-−5

5

And a parametric plot suggested by the WolframAlpha result,
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ParametricPlot[{solN[x], solN'[x]}, {x, 0, 6},
ImageSize → 175, PlotStyle → Thickness[0.005]

]

-−1.5 -−1.0 -−0.5 0.5 1.0 1.5 2.0

-−3

-−2

-−1

1

2

3

As a matter of interest, I experimented with the Cocalc site, (https://cocalc.com), where 
Sage leverages Maxima to get a friendlier Bessel solution with the command: sage: des-
olve(diff(y,x,2)+(x-1)*y==0,y,contrib_ode=True,show_method=True)

Plot x -− 1 BesselJ
1

3
,
2

3
(x -− 1)3/∕2, x -− 1 BesselY

1

3
,
2

3
(x -− 1)3/∕2,

{x, 0, 5}, ImageSize → 250, PlotStyle → Thickness[0.004]

1 2 3 4 5

-−1.0

-−0.5

0.5

One obvious advantage of the Bessel version is that it is not necessary to particularize it in 
order to get a plot. At the site https://mathematica.stackexchange.com/questions/183164/ndeigenval-
ues-vs-findroot-for-finding-the-eigenvalues-of-airy-equation/183276#183276, in the answer of Bill 
Watts, are some functions that convert Airy to Bessel. P is for positive x, and M is for minus 
x.

5.3 Extended Power Series Method- Frobenius Method 180.nb     13



AiryToBesP =
{AiryAi[x_] → (1 /∕ 3) *⋆ Sqrt[x] *⋆ (BesselI[-−3^(-−1), (2 /∕ 3) *⋆ x^(3 /∕ 2)] -−

BesselI[1 /∕ 3, (2 /∕ 3) *⋆ x^(3 /∕ 2)]),
AiryBi[x_] → Sqrt[x /∕ 3] *⋆ (BesselI[-−3^(-−1), (2 /∕ 3) *⋆ x^(3 /∕ 2)] +

BesselI[1 /∕ 3, (2 /∕ 3) *⋆ x^(3 /∕ 2)])};
AiryToBesM = {AiryAi[x_] → (1 /∕ 3) *⋆ Sqrt[-−x] *⋆ (BesselJ[-−3^(-−1),

(2 /∕ 3) *⋆ Sqrt[-−x]^3] + BesselJ[1 /∕ 3, (2 /∕ 3) *⋆ Sqrt[-−x]^3]),
AiryBi[x_] → Sqrt[-−x /∕ 3] *⋆ (BesselJ[-−3^(-−1), (2 /∕ 3) *⋆ Sqrt[-−x]^3] -−

BesselJ[1 /∕ 3, (2 /∕ 3) *⋆ Sqrt[-−x]^3])};

Carrying on with the above choice of positive x,
y[x_] = solN[x] /∕. AiryToBesP /∕/∕ Simplify

InterpolatingFunction Domain: {{0., 5.}}
Output: scalar

[x]

Plot[{y[x], y'[x]}, {x, 0, 8}, PlotStyle → Thickness[0.002]]

2 4 6 8

-−15

-−10

-−5

5

The above looks like the previous plot of ‘solN’, except that it was not necessary to use 
NDSolve, which could be an advantage, as it may have greater generality.

9.  2 x (x - 1) y'' - (x + 1) y' + y = 0

ClearAll["Global`*⋆"]

eqn = 2 x (x -− 1) y''[x] -− (x + 1) y'[x] + y[x] ⩵ 0

y[x] -− (1 + x) y′[x] + 2 (-−1 + x) x y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

y → Function{x}, x C[1] -− 2 (1 + x) C[2]

eqn /∕. sol /∕/∕ Simplify

{True}

It appears that Frobenius’s method is not necessary with this problem. In order to make the 
green cell match the text answer, I choose C[1]=1 and C[2]=- 1

2 .
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It appears that Frobenius’s method is not necessary with this problem. In order to make the 
green cell match the text answer, I choose C[1]=1 and C[2]=- 1

2 .

11.  x y'' + (2 - 2 x) y' + (x - 2) y = 0

ClearAll["Global`*⋆"]

eqn = x y''[x] + (2 -− 2 x) y'[x] + (x -− 2) y[x] ⩵ 0

(-−2 + x) y[x] + (2 -− 2 x) y′[x] + x y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

y → Function{x},
ⅇx C[1]

x
+ ⅇx C[2]

eqn /∕. sol /∕/∕ Simplify

{True}

Again the Frobenius method is not necessary. To make the green cell match the text 
answer, I choose C[1] = C[2]=1.

13.  x y'' + (1 - 2 x) y' + (x - 1) y = 0

This is one problem where Frobenius works smoothly. However, I notice now that Frobe-
nius is not necessary, and the solutions pop right out using plain old DSolve.
ClearAll["Global`*⋆"]

e1 = x y''[x] + (1 -− 2 x) y'[x] + (x -− 1) y[x] ⩵ 0

(-−1 + x) y[x] + (1 -− 2 x) y′[x] + x y′′[x] ⩵ 0

e2 = x e1

x ((-−1 + x) y[x] + (1 -− 2 x) y′[x] + x y′′[x] ⩵ 0)

e3 = x ((-−1 + x) y[x] + (1 -− 2 x) y′[x] + x y′′[x]) ⩵ 0

x ((-−1 + x) y[x] + (1 -− 2 x) y′[x] + x y′′[x]) ⩵ 0

e4 = Expand[e3]

-−x y[x] + x2 y[x] + x y′[x] -− 2 x2 y′[x] + x2 y′′[x] ⩵ 0

e5 = Collect[e4, {y''[x], y'[x], y[x]}]

-−x + x2 y[x] + x -− 2 x2 y′[x] + x2 y′′[x] ⩵ 0

 x b(x) must equal x-− 2 x2 and c(x) y must equal -−x+ x2. So b(x) equals (1-− 2 x). To find 
out b0 and c0, it is necessary to expand them.
e6 = Series[1 -− 2 x, {x, 0, 2}]

1 -− 2 x + O[x]3
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So b0 = 1.

e7 = Series-−x + x2, {x, 0, 2}

-−x + x2 + O[x]3

Because there is no constant term in the expansion of c(x), the s.m. tells me that c0 = 0.

The sol’n series will look like:
y1[x_] = am xm+r

xm+r am

y1'[x]

(m + r) x-−1+m+r am

y1''[x]

(-−1 + m + r) (m + r) x-−2+m+r am

Since I know b(x) and c(x) and b0 and c0, I can write the indicial equation.
e8 = Solve[r (r -− 1) + 1 r + 0 == 0, r]

{{r → 0}, {r → 0}}

Mathematica is telling me it is a double root. Now I can write the original equation,
e9 = x y1''[x] + (1 -− 2 x) y1'[x] + (x -− 1) y1[x] ⩵ 0

(-−1 + m + r) (m + r) x-−1+m+r am + (m + r) (1 -− 2 x) x-−1+m+r am + (-−1 + x) xm+r am ⩵ 0

e10 = e9 /∕. {r → 0}

(-−1 + m) m x-−1+m am + m (1 -− 2 x) x-−1+m am + (-−1 + x) xm am ⩵ 0

e11 = Collect[e10, (-−1 + m)]

m x-−1+m am + (-−1 + m) m x-−1+m am -− xm am -− 2 m xm am + x1+m am ⩵ 0

The five factors above are the same factors as in the s.m.

e12 = Collecte11, x-−1+m, xm, x1+m

m2 x-−1+m am + x1+m am + xm (-−am -− 2 m am) ⩵ 0

This also matches, at the place where the powers are adjusted.

e13 = e12 /∕. m2 x-−1+m am → (s + 1)2 as+1 xs,

x1+m am → (as-−1 xs), (xm (-−am -− 2 m am)) → (-−(2 s + 1) as xs)

xs a-−1+s + (-−1 -− 2 s) xs as + (1 + s)2 xs a1+s ⩵ 0

The powers are adjusted. If shown as real sums, the third factor (sum) would be 
{s, -−1, ∞}, the second {s, 0, ∞}, and the first {s, 1, ∞}.

For the case of s = -−1, only the third factor would work, fitting into that index range.
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e14 = Solve(1 + s)2 xs a1+s ⩵ 0, as+1 /∕. s → -−1

{{a0 → 0}}

In the case of s = 0, both second and third factors can accommodate.

e15 = Solve(-−1 -− 2 s) xs as + (1 + s)2 xs a1+s ⩵ 0, as /∕. s → 0

{{a0 → a1}}

In the case of s > 0, all three factors can accommodate.

e16 = Solvexs a-−1+s + (-−1 -− 2 s) xs as + (1 + s)2 xs a1+s ⩵ 0, as /∕. s → 1

a1 →
1

3
(a0 + 4 a2)

e17 = Solvea1 ==
1

3
(a0 + 4 a2), a2 /∕. a1 → a0

a2 →
a0
2



e18 = Solvexs a-−1+s + (-−1 -− 2 s) xs as + (1 + s)2 xs a1+s ⩵ 0, as+1

a1+s →
-−a-−1+s + as + 2 s as

(1 + s)2


e19 = e18 /∕. {s → 1, a0 → 1}

a2 →
1

4
(-−a0 + 3 a1)

loc = {};
e20 =
Doloc = Unionloc, Solvexs a-−1+s + (-−1 -− 2 s) xs as + (1 + s)2 xs a1+s ⩵ 0,

as+1 /∕. {a0 → 1, a1 → 1}, {s, 1, 4};
loc

This marks the point where values for both a0 and a1 are shown as assigned.

a2 →
1

2
, a3 →

1

9
(-−1 + 5 a2), a4 →

1

16
(-−a2 + 7 a3), a5 →

1

25
(-−a3 + 9 a4)

e21 = Solvea3 ==
1

9
(-−1 + 5 a2), a3 /∕. a2 →

1

2

a3 →
1

6


e22 = Solvea4 ==
1

16
(-−a2 + 7 a3), a4 /∕. a2 →

1

2
, a3 →

1

6


a4 →
1

24


5.3 Extended Power Series Method- Frobenius Method 180.nb     17



e23 = Solvea5 ==
1

25
(-−a3 + 9 a4), a5 /∕. a2 →

1

2
, a3 →

1

6
, a4 →

1

24


a5 →
1

120


e24 = cs = {2!, 3!, 4!, 5!, 6!, 7!, 8!}

{2, 6, 24, 120, 720, 5040, 40 320}

e25 = y1[x_] = Sum[am xm, {m, 0, 4}]

a0 + x a1 + x2 a2 + x3 a3 + x4 a4

In e20 I said that a0 = a1 = 1. Thus y1 = 1+ x+ x2
2! +

x3
3! +

x4
4! + · · · Looks like ⅇx.

y1 = Series[ⅇx, {x, 0, 4}]

1 + x +
x2

2
+
x3

6
+
x4

24
+ O[x]5

The green cell above matches the text answer for y1. It is still necessary to get a second 
solution. Again, the method is reduction of order. The first step is to put the equation into 
standard form.

e26 =
1

x
(-−y[x] + x y[x] + y′[x] -− 2 x y′[x] + x y′′[x]) ⩵ 0

-−y[x] + x y[x] + y′[x] -− 2 x y′[x] + x y′′[x]

x
⩵ 0

e28 = Collect[e26, {y''[x], y'[x], y[x]}]
(-−1 + x) y[x]

x
+

(1 -− 2 x) y′[x]

x
+ y′′[x] ⩵ 0

e29 = p[x_] =
(1 -− 2 x)

x
1 -− 2 x

x

Following the procedure for reduction of order,
e30 = -−Integrate[p[x], x]

2 x -− Log[x]

Using log identity, this is 

e31 = e30 /∕. -−Log[x] → Log
1

x


2 x + Log
1

x


Again, Mathematica forgot to use the Abs function when integrating a fraction.
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e32 = Exp[e31]

ⅇ2 x

x

Continuing to follow the reduction recipe, we have our big U and little u. As shown in s.m.,

e33 = bigU[x_] =
1

(ⅇx)2
ⅇ2 x

x
1

x

 And as for little u,
e34 = u[x_] = Integrate[bigU[x], x]

Log[x]

Again, should be Abs
y2 = u[x] ⅇx

ⅇx Log[x]

The green cell above matches the text answer for y2.

15 - 20 Hypergeometric ODE
Find a general solution in terms of hypergeometric functions.

15.  2 x (1 - x) y'' - (1 + 6 x) y' - 2 y = 0

ClearAll["Global`*⋆"]

Sometimes Mathematica expresses its output as Hypergeometric. But if it doesn’t, I’m not 
going to feel bad about it. In fact the plain dealing output below is better, in my opinion. 
Anyway, I  need to try to implement a translation of Hypergeometric in assessing the 
answer.
eqn = 2 x (1 -− x) y''[x] -− (1 + 6 x) y'[x] -− 2 y[x] == 0

-−2 y[x] -− (1 + 6 x) y′[x] + 2 (1 -− x) x y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

y → Function{x},

x3/∕2 C[1]

(1 -− x)5/∕2
+
2 -− 1 -− x + 4 1 -− x x + 3 x3/∕2 ArcSin x  C[2]

3 1 -− x (-−1 + x)2


eqn /∕. sol /∕/∕ Simplify

{True}

Though the format differs slightly, it is not too hard to interpret the text answer in the 
syntax native to Mathematica.
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Though the format differs slightly, it is not too hard to interpret the text answer in the 
syntax native to Mathematica.

x3/∕2 Hypergeometric2F1
5

2
,
5

2
,
5

2
, x

x3/∕2

(1 -− x)5/∕2

Hypergeometric2F11, 1, -−
1

2
, x

Hypergeometric2F11, 1, -−
1

2
, x

Mathematica returns what looks like a valid solution. The top pink cell contents, contained 
in the text answer, matches with the first function, assuming C[1] is assigned the value of 
1, but the bottom pink expression, also from the text solution, is returned unevaluated by 
Mathematica. As an emergency resource, I turn to WolframAlpha for output:

Hypergeometric2F11, 1, -−
1

2
, x =

1 -− 4 x

(x -− 1)2
-−
3 x3/∕2 ArcSin x 

1 -− x (x -− 1)2

So with the W|A output I can try

Solve
2 -− 1 -− x + 4 1 -− x x + 3 x3/∕2 ArcSin x  C[2]

3 1 -− x (-−1 + x)2
-−

1 -− 4 x

(x -− 1)2
-−
3 x3/∕2 ArcSin x 

1 -− x (x -− 1)2
⩵ 0, C[2]

C[2] →
3 1 -− x (-−1 + x)2 1-−4 x

(-−1+x)2
-− 3 x32 ArcSin x 

1-−x (-−1+x)2

2 -− 1 -− x + 4 1 -− x x + 3 x3/∕2 ArcSin x 


FullSimplify
3 1 -− x (-−1 + x)2 1-−4 x

(-−1+x)2
-− 3 x32 ArcSin x 

1-−x (-−1+x)2

2 -− 1 -− x + 4 1 -− x x + 3 x3/∕2 ArcSin x 


-−
3

2

So simply by assigning the value -3/2 to the constant C[2], the answers match.

17.  4 x (1 - x) y'' + y' + 8 y = 0
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ClearAll["Global`*⋆"]

eqn = 4 x (1 -− x) y''[x] + y'[x] + 8 y[x] == 0

8 y[x] + y′[x] + 4 (1 -− x) x y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

y → Function{x}, (1 -− x)5/∕4 x3/∕4 C[1] -−
4

15
5 -− 40 x + 32 x2 C[2]

eqn /∕. sol /∕/∕ Simplify

{True}

To check the answer, I need to convert the text answer to non-Hyper.

x3/∕4 Hypergeometric2F1
7

4
, -−

5

4
,
7

4
, x

(1 -− x)5/∕4 x3/∕4

The green cell above matches the text answer, with C[1]=1 and C[2]=- 3
4 , (assuming the 

text constants A and B both equal 1).

19. 2 t2 -− 5 t + 6 y¨ + (2 t -− 3) y, -− 8 y = 0

ClearAll["Global`*⋆"]

eqn = 2 t2 -− 5 t + 6 y''[t] + (2 t -− 3) y'[t] -− 8 y[t] == 0

-−8 y[t] + (-−3 + 2 t) y′[t] + 2 6 -− 5 t + t2 y′′[t] ⩵ 0

sol = DSolve[eqn, y, t]

y → Function{t},
(2 -− t)1/∕4 (-−3 + t)1/∕4 (-−2 + t)5/∕4 (-−17 + 6 t) C[1]

6 (3 -− t)3/∕4
+

4 (2 -− t)1/∕4 (-−3 + t)3/∕4 111 -− 104 t + 24 t2 C[2]

5 (3 -− t)3/∕4 (-−2 + t)1/∕4


eqn /∕. sol /∕/∕ Simplify

{True}

Trying to re-express the text answer into a non-Hyper form,

(t -− 2)3/∕2 Hypergeometric2F1
7

2
, -−

1

2
,
5

2
, t -− 2

(17 -− 6 t) (-−2 + t)3/∕2

5 3 -− t
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Hypergeometric2F12, -−2, -−
1

2
, t -− 2

-−111 + 104 t -− 24 t2

I need to try to reconcile Mathematica's answer with that of the text.

Solve

(2 -− t)1/∕4 (-−3 + t)1/∕4 (-−2 + t)5/∕4 (-−17 + 6 t) C[1]

6 (3 -− t)3/∕4
-−

(17 -− 6 t) (-−2 + t)3/∕2

5 3 -− t
⩵ 0,

C[1] /∕/∕ Simplify

C[1] → -−
6 (-−(-−3 + t) (-−2 + t))1/∕4

5 (2 -− t)1/∕4 (-−3 + t)1/∕4


int = -−
6 (-−(-−3 + t) (-−2 + t))1/∕4

5 (2 -− t)1/∕4 (-−3 + t)1/∕4

-−
6 ((3 -− t) (-−2 + t))1/∕4

5 (2 -− t)1/∕4 (-−3 + t)1/∕4

Simplify
(3 -− t) (-−2 + t)

(2 -− t) (-−3 + t)


1

From the above, I see that the first pair of functions differs only by the arbitrary constant 
C[1], and that this constant should receive the value of 1.

Solve

4 (2 -− t)1/∕4 (-−3 + t)3/∕4 111 -− 104 t + 24 t2 C[2]

5 (3 -− t)3/∕4 (-−2 + t)1/∕4
-− -−111 + 104 t -− 24 t2 ⩵ 0,

C[2]

C[2] →
5 (3 -− t)3/∕4 (-−2 + t)1/∕4 -−111 + 104 t -− 24 t2

4 (2 -− t)1/∕4 (-−3 + t)3/∕4 111 -− 104 t + 24 t2


Simplify
(3 -− t)

(-−3 + t)


-−1

Simplify
(-−2 + t)

(2 -− t)


-−1
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Simplify
-−111 + 104 t -− 24 t2

111 -− 104 t + 24 t2


-−1

From the above four output cells, I see that the second pair of functions differs only by the 
assigned value of C[2], which looks like it should get the value of -1, stemming from 
(-1*-1*-1) = -1.

I therefore conclude that yellow cell equals the sum of the two pinks, and therefore yel-
low is equivalent to the text answer.
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